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Abstract— The degradation in image resolution harms
the performance of medical image diagnosis. By inferring
high-frequency details from low-resolution (LR) images,
super-resolution (SR) techniques can introduce additional
knowledge and assist high-level tasks. In this paper, we pro-
pose a SR enhanced diagnosis framework, consisting of
an efficient SR network and a diagnosis network. Specifi-
cally, a Multi-scale Refined Context Network (MRC-Net) with
Refined Context Fusion (RCF) is devised to leverage global
and local features for SR tasks. Instead of learning from
scratch, we first develop a recursive MRC-Net with temporal
context, and then propose a recursion distillation scheme to
enhance the performance of MRC-Net from the knowledge
of the recursive one and reduce the computational cost.
The diagnosis network jointly utilizes the reliable original
images and more informative SR images by two branches,
with the proposed Sample Affinity Interaction (SAI) blocks
at different stages to effectively extract and integrate dis-
criminative features towards diagnosis. Moreover, two novel
constraints, sample affinity consistency and sample affinity
regularization, are devised to refine the features and achieve
the mutual promotion of these two branches. Extensive
experiments of synthetic and real LR cases are conducted
on wireless capsule endoscopy and histopathology images,
verifying that our proposed method is significantly effective
for medical image diagnosis.

Index Terms— Medical image diagnosis, super resolu-
tion, semantic consistency.

I. INTRODUCTION

THE details of small pathologies and texture informa-
tion around abnormalities are crucial to the diagnosis

of clinical experts and computer-aided algorithms [1]. It is
reported that a high definition colonoscopy can bring a 3.8%
improvement to polyp detection compared with conventional
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Fig. 1. The resolution degradation problem in medical image diagnosis.
Examples are from CAD-CAP dataset [14]. Each row includes the LR
image with 64× 64 pixels, the 8× bicubic interpolated LR image and the
HR image with 512 × 512 pixels from left to right.

resolution endoscopic examinations [2]. However, access to
expensive high-end imaging equipment is limited in remote
and impoverished areas where medical images have generally
inferior spatial resolution. This could interfere with the early
diagnosis of diseases that rely on reliable and accurate image
interpretation. Single image super-resolution (SR) offers a
feasible alternative to mitigate the resolution degradation by
reconstructing high-resolution (HR) images from their corre-
sponding low-resolution (LR) inputs. With the introduction
of extra pixels, SR techniques compensate for the missing
information of LR images. Recently, numerous deep learn-
ing based SR methods [3]–[11] have been investigated with
various network structures or novel loss functions, and some
studies have proven that pretrained SR networks promote the
down-stream tasks, especially object detection [12], [13]. The
elevation of SR models to detection tasks is readily achieved,
as imperceptible tiny objects can be captured by networks after
SR. However, promoting medical image diagnosis through SR
techniques has not been well explored.

We hypothesize that exploiting the detailed information
introduced by SR techniques can improve the medical image
diagnosis. The intuition behind this hypothesis is illustrated by
wireless capsule endoscopy (WCE) images in Fig. 1. Small
lesions depicted by LR images may not be perceived by
clinical experts and algorithms. Even after interpolation, lesion
and normal tissues exhibit similar confounding features at
image space, which may confuse the diagnosis to misinterpret
both samples as lesions. In contrast, HR images with more
details are clear to distinguish the first sample as lesion
and the second sample as the normal one. This comparison
demonstrates that high-frequency details in image space can
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eliminate the ambiguity in inference and lead to more accurate
and reliable diagnosis. However, previous studies directly
applied trained SR networks as a pre-processing step [12],
[13], [15], [16], which are far from satisfactory with two
shortcomings.

The first problem is that state-of-the-art SR networks
[4]–[7] require extremely high hardware resources. For exam-
ple, the enhanced deep super-resolution network (EDSR)
contains 4.31 × 107 parameters and requires 1.65 × 1012

floating point operations (FLOPs) and 1.72 GB runtime
memory when computing a single image with 128 × 128
resolution [5]. These burdensome SR models are unaffordable
to assist the medical diagnosis, thus an efficient yet powerful
SR network is indispensable for the diagnosis framework.
Therefore, we propose a Multi-scale Refined Context Network
(MRC-Net). In the MRC-Net, a MRC module is devised to
extract both global structures at large-scale and local details
at small-scale, with the Refined Context Fusion (RCF) to
enhance the interaction of global and local paths. Conse-
quently, MRC-Net is capable to extract abundant information
with fewer layers and filters. To further improve the perfor-
mance of MRC-Net instead of training from scratch, we pro-
pose a recursion distillation scheme. Specifically, we first
train a recursive MRC-Net with a LSTM unit. The LSTM
unit can harness all the features of previous iterations to
correct the current inference errors, thereby achieving better
SR reconstruction. After that, a single-forward MRC-Net is
built and guided to learn the temporal knowledge of the
trained recursive one under explicit supervision. In this way,
the single-forward MRC-Net not only performs on par with the
recursive one, but also requires less computation and runtime
memory.

Another challenge of existing methods [12], [13], [15],
[16] is that the original LR images and the SR images are
not utilized comprehensively. These methods solely utilized
the SR images for specific tasks, ignoring the original LR
images and corresponding reliable information. In fact, SR is
an inherently ill-posed task as various HR images can be
degraded into the same LR image. SR methods may introduce
artifacts to the reconstructed images, thereby leading to biased
diagnosis. Therefore, we propose a novel diagnosis network,
composed of two diagnosis branches, to jointly and collab-
oratively utilize the excessive information from SR images
and the reliable information from original LR images. Instead
of integrating the features of these two branches directly,
a novel Sample Affinity Interaction (SAI) block is devised to
exploit and assimilate discriminative features by investigating
the relationship of samples, which results in a better interaction
at semantic space. Besides, a sample affinity consistency is
devised to constrain these two branches to maintain consistent
yet effective semantic information towards diagnosis, and
a sample affinity regularization is proposed to rectify the
semantic information at low-level from the high-level one,
thereby promoting the performance.

In this framework, MRC-Net is first trained on a specific
SR dataset using the recursion distillation scheme for SR.
To further exploit SR knowledge for diagnosis, we fine-tune
the pretrained MRC-Net and diagnosis network in an

end-to-end manner under diagnostic supervision. We summa-
rize our contributions as follows:

• We propose a SR enhanced diagnosis framework for
medical images, which is composed of an efficient
SR network and a diagnosis network. To the best of
our knowledge, this work represents the first effort
to comprehensively joint super-resolution and medical
diagnosis.

• We design an efficient MRC-Net for the SR task,
with RCF to strengthen network capability. Moreover,
to enable MRC-Net with the temporal knowledge, a recur-
sion distillation scheme is devised to retain impressive
SR performance with computation and runtime memory
remarkably reduced.

• In the diagnosis network, we propose a novel SAI block
to exploit and integrate features among two different reso-
lution branches, utilizing the semantic relationship among
samples. Additionally, two kinds of constraints, sample
affinity consistency and sample affinity regularization, are
devised to guide the multi-level information interaction.

• Extensive experiments on WCE and histopathology
images prove the effectiveness of our approach, which
outperforms state-of-the-art diagnosis algorithms on both
synthetic and real LR images. The SR enhanced diagnosis
framework significantly promotes the baseline diagnosis
network with a 5.83% increase in accuracy, approaching
the performance of HR images.

II. RELATED WORKS

A. Super-Resolution

In recent years, various deep learning based SR meth-
ods have been investigated. Dong et al. [3] proposed the
super-resolution convolutional neural network (SRCNN) to
predict SR images using three stacked convolutional layers.
Kim et al. [4] introduced the global skip connection and
made it possible to stack more layers for SR. EDSR [5]
employed residual blocks [17] to further enhance the network
capability. Moreover, a lightweight cascading residual network
(CARN) [6] utilized dense skip connections to improve the
residual blocks based structure. Instead of reconstruction in
image space, a multi-level wavelet CNN (MWCNN) [7] con-
ducted SR in wavelet domain to emphasize high-frequency
components.

At the same time, targeted SR algorithms are proposed
to meet the requirements of various medical fields [8]–[11].
Particularly, Zhao et al. [8] devised a channel splitting net-
work with a dense branch and a residual branch to exploit
hierarchical features for SR of magnetic resonance images.
Li et al. [9] developed a two-stage SR network optimized
by novel gradient sensitive loss and traditional mean square
error (MSE) loss to super-resolve the arterial spin labeling.
Khan et al. [10] adopted SR techniques to enhance the
ultrasound imaging at the Hilbert domain. Instead of conven-
tional single LR-HR pair, Mukherjee et al. [11] built multi-
ple histopathology images with intermediate resolution, and
trained a recurrent SR network with such a multi-resolution
dataset.
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Fig. 2. The SR enhanced diagnosis framework, including a super-resolution network and a diagnosis network. The diagnosis network contains a
SR diagnosis branch and a LR diagnosis branch. The Sample Affinity Interaction (SAI) blocks at multi-stage exchange the complementary semantic
information of two branches. The gate mechanism integrates two branches and auxiliary prediction yaux to produce the final diagnosis yens.

B. Super-Resolution Aided High-Level Tasks

Since SR models can provide complementary information
for low resolution images, several methods have been pro-
posed to apply SR techniques to promote the performance
of high-level tasks [12], [13]. To address the problem that
tiny faces suffer from the missing of detailed information,
Bai et al. [12] directly generated high-quality SR face regions
from blurry small inputs to detect faces in the wild. Sher-
meyer et al. [13] explored the influence of various SR methods
on object detection in satellite imagery and proved that SR
techniques improved the detection of tiny objects.

In healthcare applications, Srivastav et al. [15] introduced
a progressive SR network to complement high-frequency
features for the down-stream surgery task, which prompted
surgeon pose estimation with a 6.5% increase in the per-
centage of correct key points. For the retinal SR, Mahapa-
tra et al. [16] proposed a progressive generative adversarial
network with a triplet loss to enable the stepwise improve-
ment of image quality, which can promote the vasculature
segmentation and microaneurysm detection. Instead of directly
employing trained SR networks as a pre-processing step,
we investigate a comprehensive diagnosis framework to lever-
age the information of both the SR images and the original
LR ones.

III. METHOD

The SR enhanced diagnosis framework is composed of a
SR network and a diagnosis network, as illustrated in Fig. 2.
Particularly, the SR network employs a MRC-Net, which is
optimized by the recursion distillation scheme to enhance the
SR performance. The diagnosis network jointly considers the
SR images and the original LR ones to generate the diagnostic
predictions. In this section, we first introduce the MRC-Net
structure and the recursion distillation scheme. Subsequently,

we present the diagnosis network part, including the SAI
block, the gate mechanism and tailored loss functions.

A. Super-Resolution Network

We propose the MRC-Net for the SR of medical images.
As shown in Fig. 3, the MRC module extracts global and
local features in two parallel paths, and utilizes the devised
Refined Context Fusion (RCF) to conduct the efficient con-
textual information interaction. As appropriate larger network
capacity improves the training process [18], the recursion
distillation scheme is proposed to generate an enhanced
MRC-Net. Specifically, we first train a recursive MRC-Net
with LSTM mechanism, and then distill its temporal knowl-
edge to a single-forward MRC-Net, thereby preserving perfor-
mance with reduced resource demand. Compared with training
from scratch, the distilled MRC-Net is strengthened with
significant performance gain.

1) Recursive MRC-Net: We exemplify the architecture of
MRC-Net with the recursive version in Fig. 3 (a). The
MRC-Net first executes two groups of a 3 × 3 convolutional
layer and two residual blocks [17] to convert the input IL R

into feature maps. After that, a convolutional LSTM unit is
adopted to exploit and store the information of past feature
maps. Specifically, a LSTM unit consists of an input gate it ,
a forget gate ft , an output gate ot and a cell state Ct [19],
[20]. Provided with input features X and previous feedback
Yt−1, temporal updates of states and gates are calculated as
follows:

it = σ
(
Wxi ∗ X + Wyi ∗ Yt−1 + Wci � Ct−1 + bi

)

ft = σ
(
Wx f ∗ X + Wy f ∗ Yt−1 + Wc f � Ct−1 + b f

)

Ct = ft � Ct−1 + it � tanh
(
Wxc ∗ X + Wyc ∗ Yt−1 + bc

)

ot = σ
(
Wxo ∗ X + Wyo ∗ Yt−1 + Wco � Ct + bo

)

Ht = ot � tanh (Ct ) (1)
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Fig. 3. (a) The recursive MRC-Net for SR. The single-forward MRC-Net deletes the feedback Yt−1 marked in a dashed line, and consequently the
LSTM unit degenerates into convolutional layers without cell states. (b) The temporal expansion of the recursive MRC-Net, where feature extract
and image reconstruction are omitted for simplicity. The learnable parameters of MRC module are shared during iterations. Provided with LR input
ILR, the recursive MRC-Net utilizes Yt−1 and Ct−1 to generate SR prediction ItSR at t step. Then, the feedback Yt and cell state Ct are delivered
to the recursive MRC-Ne at t + 1 step to enhance and rectify the previous SR output. (c) Multi-scale Refined Context (MRC) module and Refined
Context Fusion (RCF).

where ∗ and � denote the convolution operation and
Hadamard product respectively, and σ and tanh are the Sig-
moid and Tanh function respectively. Wxi represents parame-
ters of a convolutional layer mapping from X to it . Similarly,
other W symbols also follow this rule. Since each forward is
delivered with the same input, the recursive MRC-Net shares
parameters during temporal iterations, without introducing
extra parameters.

Then, the current output of LSTM unit, Ht , is delivered
into the MRC module, denoted as f , to exploit the significant
features for SR recovery in a residual manner, as follows:

Yt = f (Ht ) + Ht (2)

The processed features Yt will be sent back to the LSTM
at the next t +1 step. The temporal expansion of the recursive
MRC-Net is illustrated in Fig. 3 (b). The recursion mechanism
progressively enhances the features and rectifies the potential
mistakes made in previous iterations. Finally, we reconstruct
features into image space with targeted resolution by a pixel
shuffle layer [21]. A global skip connection with upsam-
pling is adopted to accelerate the training convergence. The
single-forward MRC-Net is composed of the same architecture
as the recursive one, without the feedback of MRC module.

Multi-Scale Refined Context (MRC) Module: Since
multi-scale feature maps provide different and complementary
information of images [22], we devise the MRC module for
the SR task. It consists of a local path with input feature
maps and a parallel global path with the corresponding
downsampled counterpart, as shown in Fig. 3 (c). Each path

is constructed with repeated groups of residual blocks and
the proposed RCF alternately. The stacked residual blocks
in these two paths extract the features at different scales.
With bilinear down/upsampling to adjust the resolution, RCF
utilizes efficient global context [23] to refine and integrate the
significant features of these two paths iteratively, as illustrated
in Fig. 3 (c). Denote x1 and x2 as the feature maps of the
current path and the other one, respectively, the refined output
x �

1 is computed as follows:
x �

1 = x1 � σ (W2 ∗ δ (W1 ∗ GAP (x1)))

+ Wv2 ∗ σ(Wv1 ∗ (Softmax(Wk ∗ x1) × x2)) (3)

where σ and δ are Sigmoid and PReLU function, respec-
tively, GAP represents global average pooling, and each W
represents the parameters of 1 × 1 conv layers. Softmax is
conducted to normalize feature maps in width and height
dimensions, and × stands for matrix multiplication in spatial
dimension with necessary reshape as [23]. The first term
adaptively modifies x1 by a self-gate, while the second term
rectifies x2 using the spatial context of x1. By adding these
two terms together, RCF is able to utilize the context of x1
and x2 comprehensively, preserving the significant features for
medical SR tasks [24]. In this way, MRC-Net can capture
details in the local path and preserve structural information
in the global path simultaneously, which is helpful to exploit
appropriate information for better reconstruction.

2) Recursion Distillation Scheme: A novel recursion distil-
lation scheme is proposed to enhance the efficient MRC-Net
for super resolution of medical images. Particularly, we first
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Algorithm 1: The Recursion Distillation Scheme

Input : The recursive MRC-Net fr (ε1);
The training dataset {I i

L R, I i
H R}1≤i≤|D|;

Weighted factors γd , γ1, γ2, γ3 and γ4;
Output: The distilled MRC-Net with single-forward

fs(ε2);

1 Initialization: ε2 := ε1;
2 while fs(ε2) reaches convergence do
3 I r

S R, Fr
S R, Fr

L R, Cr , H r = fr (IL R; ε1) at the last step
of recursion;

4 I s
S R, Fs

S R, Fs
L R, Cs , H s = fs(IL R; ε2);

5 comptue SR supervision LMAE(I s
S R, IH R);

6 compute the distill loss Ld as Eq. (4), containing the
recursion knowledge from fr (ε1);

7 minimize LMAE(I s
S R, IH R) + γd Ld ;

8 end
9 while fs(ε2) reaches convergence do

10 I s
S R = fs(IL R; ε2);

11 minimize LMAE(I s
S R, IH R);

12 end
13 Obtain the distilled single-forward MRC-Net fs(ε2) with

recursion knowledge.

train a recursive MRC-Net containing a LSTM unit, denoted
as fr (ε1), where ε1 represents its parameters. As previously
introduced, the recursive MRC-Net contains temporal context.
Then, we build a single-forward MRC-Net fs(ε2) to distill
the knowledge of fr (ε1). fs(ε2) is initialized with the trained
parameters of fr (ε1), as ε2 := ε1, and trained with the distill
loss Ld , as computed in MSE:

Ld = γ1 LMSE(Cs, Cr ) + γ2 LMSE(Hs, Hr )

+ γ3LMSE(Fs
L R, Fr

L R) + γ4LMSE(Fs
S R, Fr

S R) (4)

where γ1, γ2, γ3 and γ4 are weights to balance different
loss terms. Particularly, LMSE(Cs , Cr ) and LMSE(Hs, Hr ) are
the explicit supervision from cell states and LSTM outputs,
respectively. In addition, constraints on multi-resolution fea-
tures, LMSE(Fs

L R, Fr
L R) and LMSE(Fs

S R, Fr
S R), are leveraged

to assist the distillation procedure, where FL R and FS R

are feature maps before and after the pixel shuffle layer,
respectively. Considering the predictions of fr (ε1) may deviate
from the ground-truth [25], we further fine-tune the distilled
MRC-Net fs(ε2) with mean absolute error loss LMAE on the
training set. The procedures of recursion distillation scheme
are summarized in Algorithm 1.

Different from existing distillation methods [26]–[28],
fs(ε2) has the same architecture as the recursive teacher
fr (ε1). Removing the recursive feedback, fs(ε2) demands
less computation, runtime memory and inference time than
fr (ε1). Through appropriate knowledge transfer, the dis-
tilled fs(ε2) preserves comparable performance with fr (ε1).
In the following, the diagnosis framework will adopt the
distilled single-forward MRC-Net fs(ε2), which is denoted
as MRC-Net for simplicity. To avoid ambiguity, the recursive

version fr (ε1) is named as recursive MRC-Net. The MRC-Net
will be further fine-tuned under the diagnosis framework.

B. Diagnosis Network

As shown in Fig. 2, the diagnosis network includes two
diagnosis branches progressively interacted through the pro-
posed SAI blocks. We implement two branches with the same
structure. These two branches exploit the SR and original LR
images, and predict the diagnosis yS R and yL R separately,
as well as an auxiliary prediction yaux for each sample. Finally,
a gate mechanism is utilized to integrate the final diagnosis
yens . Particularly, feature maps at different stages are delivered
to the SAI blocks to exploit the semantic affinity among
samples and exchange the rectified features to the opposite
branch. Moreover, we devise the sample affinity consistency
loss LSAC and sample affinity regularization loss LSAR to con-
strain the semantic information of two branches and provide
complementary supervision for the diagnosis network.

1) Sample Affinity Interaction (SAI) Block: As the observation
that semantically similar inputs tend to produce coherent
activation patterns in a trained network [29], to leverage
the knowledge among samples can potentially encourage the
diagnosis network to extract discriminative features for med-
ical diagnosis. Instead of directly integrating features of LR
diagnosis branch and SR diagnosis branch, we propose the
SAI block to exploit the semantic relationship of these two
branches with sample affinity, enabling a better information
interaction. Given a mini-batch input with B samples, denote
the feature maps of a specific stage of the SR diagnosis
branch as FS R ∈ RB×C×H×W , where C is the number of
channels, and H and W are the height and width of feature
maps. The LR diagnosis branch generates the feature map
FL R ∈ RB×C×H �×W �

at the same stage. First, we reshape these
features maps into two dimensions, as FS R ∈ RB×C H W and
FL R ∈ RB×C H �W �

. The sample affinity AS R ∈ RB×B of the
SR diagnosis branch is formulated in matrix multiplication as:

AS R = FS R · FT
S R (5)

Specifically, AS R[i, j ] = FS R[i, : ] · FS R[ j, : ]T represents the
semantic similarity between i -th sample and j -th sample, with
a large value for samples within the same category or a small
value for samples across different categories [29]. We also
conduct the same process on FL R to generate the sample
affinity AL R of the LR diagnosis branch as AL R = FL R ·FT

L R .
A row-wise L2 normalization is applied to both AS R and AL R

before further operations.
Then, we calculate the mutual sample affinity of two

branches by multiplying AS R and AL R . Specifically, ML→S ∈
RB×B represents the mutual sample affinity from the LR
diagnosis branch to the SR diagnosis branch and MS→L ∈
RB×B represents the reverse mapping, as follows:

ML→S = AS R · AT
L R

MS→L = AL R · AT
S R (6)

Note that these two matrices are transposed to each other,
as ML→S = (MS→L)T . We apply ML→S to map FL R of the
LR diagnosis branch to the SR diagnosis branch, and apply
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the transposed affinity MS→L on FS R in turn. The transferred
features FL→S and FS→L are computed as follows:

FL→S = ML→S · FL R

FS→L = MS→L · FS R (7)

Finally, we reshape FL→S and FS→L back into 4-D tensors,
as FL→S ∈ RB×C×H �×W �

and FS→L ∈ RB×C×H×W , and
conduct necessary up/downsampling to achieve compatible
resolution with the opposite branch. After that, the features
from the current branch and the affinity-rectified features from
the opposite branch, e.g., FS R and FL→S , are concatenated
in channel dimension and followed by a 1 × 1 bottleneck to
generate compact feature maps for the next layer. Therefore,
the SAI block utilizes the semantic relationship of samples and
enables the information interaction between two branches.

Compared with previous spatial or channel affinity within
each sample, which adjust features at the representation
space [30]–[33], the proposed SAI block utilizes the sample
affinity to model the relationship among samples, guaranteeing
the consistency of different inputs at semantic space. In addi-
tion, the SAI block achieves better adaptation of the features
among two branches, since mutual sample affinity exploits the
bijective mapping at semantic space.

2) Diagnosis Ensemble With Gate Mechanism: A gate mech-
anism is utilized to produce the final diagnosis prediction
yens . The features of two branches, xS R and xL R , are con-
catenated after global average pooling and then delivered to
two separate convolutional layers to generate a gate vector
G and an auxiliary prediction, yaux . The gate is calculated
as G = Conv2(ReLU(Conv1([xS R, xL R]))), where Conv1
and Conv2 are two 1 × 1 convolutional layers to shrink the
channel dimension progressively. Given each sample, G ∈ R3

represents the importance of yS R, yL R and yaux . The final
diagnosis yens is obtained by summation weighted with the
importance score G, as follows:

yens = [
yS R, yL R, yaux

] · max(0, tanh(G)) (8)

where tanh adjusts the range of G and max operation omits
the diagnosis branch with a negative score. In this way,
the importance scores in G are controlled to [0, 1). As different
G vectors are generated for each sample, the gate mechanism
achieves a tailor-made ensemble strategy.

3) Loss Functions: To guide the multi-level interaction of
two branches and promote the diagnosis performance, the pro-
posed framework is optimized by a joint loss function, includ-
ing the proposed sample affinity consistency loss, sample
affinity regularization loss, cross entropy loss and rank loss.

a) Sample Affinity Consistency Loss: Although the SR
images and the original LR images in two branches have
different representation spaces, these paired images share
the identical diagnostic labels. To guarantee the consistent
semantic information of two branches towards diagnosis,
we propose the sample affinity consistency LSAC to minimize
the multi-stage differences between AS R and AL R , as follows:

LSAC =
S∑

s=1

||τ (A(s)
S R) − τ (A(s)

L R)||F (9)

where || · ||F is the Frobenius norm of matrix to measure the
affinity difference of two branches. S is the number of stages in
the diagnosis network. τ is the temperature function to soften
the affinity distribution in row-wise:

τ (A[i, : ]) = exp (A[i, : ]/T )
∑B

j exp (A[ j, : ]/T )
(10)

where T is the temperature to control the distribution, as a
larger T makes the distribution softer.

b) Sample Affinity Regularization Loss: As deep layers
extract more abstract features than shallow layers at semantic
space, the supervision on attention maps from deep layers
to shallow layers can lead an improvement in high-level
tasks [34], [35]. Following this, we propose the sample affinity
regularization LSAR to constrain the mutual affinity matrix of
shallow layer using the deep layer one. The LSAR is defined
as follows:

LSAR =
S−1∑

s=1

1

2
(||τ (M(s+1

L→S)) − τ (M(s)
L→S)||F

+ ||τ (M(s+1
S→L)) − τ (M(s)

S→L)||F) (11)

where M(s) represents the mutual sample affinity at the s-th
stage. In this way, the high-quality mutual sample affinity of
deep stages can refine the counterpart of shallow stages, and
the improved affinity matrices of shallow stages in turn benefit
the deeper stages.

c) Cross Entropy Loss: We also employ the cross entropy
loss LCE on the final prediction yens as well as preliminary
predictions yS R, yL R and yaux :

LCE =
∑

y∈{yens,yS R,yL R ,yaux }
LCE(y, t) (12)

where t represents the one-hot vector of category label.
d) Rank Loss: To encourage the final diagnosis yens to

provide a better diagnosis than preliminary ones, we introduce
a rank loss Lrank to penalize the case that yens performs worse:

Lrank =
∑

y∈{yS R,yL R ,yaux }
max {0, y(c) − yens(c) + m} (13)

where c is the index of the correct category and y(c) is a scalar
representing the predicted probability on the correct category.
m is a margin between yens and y, leading yens producing a
higher probability for the correct category. We empirically set
m as 0.05. In this way, yens integrates preliminary predictions
to accomplish a more reliable diagnosis.

Finally, the total loss of the diagnosis network is defined as
follows:

L = LCE + λ1 Lrank + λ2 LSAC + λ3 LSAR (14)

where λ1, λ2 and λ3 are trade-off weights to adjust the
importance of loss components, which are empirically set
as 1, 100 and 100, respectively. Through optimizing with
Eq. (14), our SR enhanced diagnosis framework can obtain
the remarkable performance.
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IV. EXPERIMENTS

A. Dataset and Settings

As the acquisition equipment for high-quality WCE and
histopathology images is typically very expensive, SR tech-
niques can process images acquired by low-quality devices
into the same resolution with satisfactory quality [11], which
are widely available and comparatively inexpensive. To prove
the contribution of our work to this issue, we conducted
experiments on these two kinds of images in synthetic and
real LR scenarios.

1) WCE Dataset: We evaluated the SR enhanced diagnosis
framework on the CAD-CAP dataset [14], which consists of
1, 800 labeled WCE images, including 600 normal images,
600 inflammatory ones and 600 vascular lesion ones. Follow-
ing the process to unify image resolution and quality [36],
we resized the WCE images to 128×128 and applied a uniform
circle mask to the dataset. Therefore, the processed CAD-CAP
dataset serves as the synthetic LR case for diagnosis. Four-fold
cross validation was adopted for this dataset. For the SR task,
we built the Endoscopy SR (EndoSR) dataset with another
1, 807 unlabeled WCE images of the CAD-CAP dataset [14].
All images were first resized into 512 × 512 resolution as
the HR images, which were further downsampled into the LR
ones with a resolution of 128 × 128 using bicubic kernel.
Consequently, the EndoSR dataset provided a 4× zoom-in
mapping for the SR task, with 1, 507 LR-HR pairs for training
and 300 pairs for test.

2) HistopathologicalDataset: For the histopathology images,
we evaluated the SR enhanced diagnosis framework on a
modified PCam dataset [37], [38], which consists of 178, 240
images with 96 × 96 pixels from lymph node section. These
images were captured by 10× objective microscopy, which
serve as the diagnosis task of real LR images. Each image
was annotated with a binary label, indicating the presence
of metastatic tissue. The experiment was conducted in 3
non-overlap fold settings, with 160, 416 training images and
17, 824 test images in each evaluation. Furthermore, we built a
Histopathology Super-Resolution (HistoSR) dataset using the
high-quality H&E stained WSIs of Camelyon16 dataset [39].
Through random cropping and bicubic downsampling, the His-
toSR dataset provided a 2× zoom-in mapping from 96 × 96
patch to 192×192 patch, with 30, 000 training pairs and 5, 000
test pairs.

3) Experimental Settings: In our implementation, the MRC
module was constructed with 4 successive groups of 4 resid-
ual blocks, and global and local paths individually con-
tained 32 filters at each layer. In the diagnosis network,
both the SR diagnosis branch and the LR diagnosis branch
employed ResNet-18 structure [17]. The diagnosis framework
was trained in two steps. Specifically, MRC-Net was first
trained under the recursion distillation scheme on a specific
SR dataset, optimized by Adam with the batch size of 4. The
learning rate was initialized as 1×10−4 and halved after every
100 epochs until convergence. The weight decay was set as
1 × 10−5. In the recursion distillation scheme, the number of
recursion was empirically set as 3, and γ1, γ2, γ3, γ4 and
γd are set as 2, 2, 2, 0.5 and 1, respectively. To integrate

TABLE I
SR PERFORMANCE AND RESOURCE DEMANDS ON 4× ENDOSR

DATATSET AND 2× HISTOSR DATATSET. BEST AND SECOND BEST

RESULTS ARE HIGHLIGHTED AND UNDERLINED

MRC-Net into the diagnosis framework, we conducted the
SR with RGB channels. After that, the whole framework was
optimized by the diagnostic supervision, optimized by Adam
with the batch size of 8. The learning rate was initialized
as 1 × 10−4 and halved after every 30 epochs, where the
learning rate of MRC-Net was decreased by a factor of 0.01.
For the consistency and regularization of sample affinity,
we empirically set T as 1.

We evaluated SR networks from the perspective of per-
formance and efficiency. Specifically, peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM)
were adopted to assess the reconstruction quality, while the
number of parameters, FLOPs and runtime memory were cal-
culated to measure the resource demand of SR networks. The
diagnosis performance was evaluated by accuracy, F1 score,
sensitivity, specificity, Cohen’s Kappa (CK) and Matthews
Correlation Coefficient (MCC). Since the CAD-CAP dataset
contains three categories, binary metrics were first computed
for each category and then averaged, which are called macro
averaging.

B. Super-Resolution Experiments

1) SR on EndoSR and HistoSR: We compared our MRC-Net
with state-of-the-art networks [4]–[7] on EndoSR and HistoSR
dataset in Table I. As large-scale SR networks bring imprac-
tical resource overheads to the diagnosis framework, effi-
cient SR networks with impressive performance are preferred
in this work. We employed the EDSR baseline model [5],
which is a smaller EDSR with the same topology. For the
EndoSR dataset, MRC-Net achieves a superior performance,
with PSNR of 38.586 dB and SSIM of 0.9543. Our MRC-Net
outperforms the second best MWCNN [7] with a 0.204 dB
advantage, and demands only 5.86% FLOPs and 3.13% para-
meters of MWCNN. In fact, MRC-Net requires the least
computation among these state-of-the-art algorithms, with low
amount of parameters as well as runtime memory. An evident
comparison is illustrated in Fig. 4, where our MRC-Net at
the top-left corner is considered to achieve the best trade-off
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Fig. 4. The performance and resource demands of state-of-the-art SR
networks on 4× EndoSR dataset. The horizontal axis represents the
computation, measured by logarithmic FLOPs for better observation. The
vertical axis represents PSNR. The circle area represents the amount of
parameters. A smaller circle at the top-left corner is considered to be a
better SR network.

between performance and efficiency among state-of-the-art
networks [4]–[7].

Moreover, the consistent advantage of MRC-Net is also
confirmed on the HistoSR dataset. The MRC-Net generates
the best reconstruction with PSNR of 32.754 dB and SSIM
of 0.9509, and requires the least 1.00 × 1010 FLOPs and
the second least 0.71 million parameters. With the fact that
MRC-Net only brings a 3% overhead of parameters to the
entire framework, the efficient yet powerful MRC-Net is
suitable for enhancing the diagnostic task.

Qualitative results of EndoSR and HistoSR dataset are elab-
orated in Fig. 5. The reconstructed details of attentive regions,
prove that our MRC-Net can generate visual high-quality
SR predictions, which are also more consistent with ground
truth measured by PSNR and SSIM. To further compare
with state-of-the-art networks, we visualized the heatmap of
reconstruction errors, which were normalized by the maximum
and minimum reconstruction errors of different methods on the
same sample. Specifically, MRC-Net alleviates reconstruction
errors apparently within the marked region in Fig. 5 (a), and
generates significantly less red areas and more blue areas in
Fig. 5 (b).

2) Ablation Study: To confirm the capability of the recursion
distillation scheme and the RCF, we implemented the follow-
ing networks on the EndoSR dataset, as shown in Table II.

• Stack: A network stacked with 3 MRC modules, where
the LSTM unit degenerates into convolutional layers.

• Recursive: A 3-times recursive MRC-Net containing a
MRC module. In addition, we also conducted the recur-
sive MRC-Net without LSTM unit or RCF to verify the
influence of LSTM unit and RCF.

• Scratch: A single-forward MRC-Net trained from scratch.
• MRC-Net: A single-forward MRC-Net optimized by the

recursion distillation scheme.

In Table II, the recursive MRC-Net achieves the best
performance, including 38.595 dB of PSNR and 0.9543 of
SSIM. The recursive MRC-Net outperforms the stack one

TABLE II
ABLATION STUDY OF MRC-NET ON 4× ENDOSR DATASET. BEST AND

SECOND BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED

with 0.047 dB in PSNR, containing 45% parameters of the
stack one. We conjecture that the recursion mechanism can
leverage parameters more effectively than simply stacking
more layers. As the recursive MRC-Net without LSTM unit
reaches 38.417 dB PSNR, removing the LSTM unit leads a
0.178 dB PSNR decrease to the recursive MRC-Net, which
performs worse than the stack one. The existing simple recur-
sive SR networks [40]–[42] without LSTM unit, also lead to
unsatisfactory SR performance on 4× EndoSR dataset. This
confirms that the LSTM unit is significant to exploit and rectify
features of previous steps in the recursion mechanism. More-
over, the recursive MRC-Net without RCF achieves 38.391 dB
in PSNR, which proves that RCF can integrate multi-scale
features better with a 0.204 dB gain in PSNR. Compared with
the 38.371% accuracy of training from scratch, the recursion
distillation scheme brings MRC-Net a PSNR advantage of
0.215 dB. In this way, MRC-Net preserves the comparable
performance of the recursive one, achieving 38.586 dB in
PSNR with only 63% FLOPs and 62% runtime memory.

C. Diagnosis Experiments

1) WCE Experiment: We compared the diagnosis perfor-
mance of our framework with state-of-the-art algorithms [36],
[43]–[45] on the CAD-CAP dataset. As shown in Table III, our
SR enhanced diagnosis framework achieves a superior perfor-
mance with averaged accuracy of 94.94%, macro F1 score of
94.78% and CK of 92.17%, which outperforms the second best
one [36] with an advantage of 1.88% in accuracy and 2.59%
in CK. Moreover, our method reveals impressive yet balanced
sensitivity of 94.78% and specificity of 97.39%. By intro-
ducing SR knowledge with affordable computation overhead,
our diagnosis framework achieves more reliable predictions on
WCE images. In Table IV, we further implemented state-of-
the-art algorithms [36], [43]–[45] with interpolated LR images
and SR images. Compared with the LR input baselines, these
WCE diagnosis approaches with the interpolated LR images
as input are improved with a marginal F1 increase of 0.15%,
0.19%, 0.02% and 0.10% for [43]–[45] and [36], respec-
tively. Moreover, the best baseline method [36] with SR input
achieves 93.27% in accuracy, worse than our framework with
a 1.67% gap. This validates that simply applying resolution
interpolation or SR network as a pre-processing can hardly
improve the diagnosis, which also confirms the necessity of
our tailor-made SR enhanced diagnosis framework.
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Fig. 5. Qualitative results of (a) 4× EndoSR dataset; (b) 2× HistoSR dataset. In each subfigure, the first row illustrates the LR, SR predictions of
various SR networks and HR ground truth of the yellow box. The second row compares our MRC-Net with VDSR [4], CARN [6], EDSR* [5] and
MWCNN [7]. For a better visualization, each point of the heatmap represents the normalized reconstruction error after 11 × 11 Gaussian filtering,
with blue for low reconstruction errors and red for high errors.

TABLE III
THE DIAGNOSIS COMPARISON ON CAD-CAP AND PCAM DATASET. BEST AND SECOND BEST

RESULTS ARE HIGHLIGHTED AND UNDERLINED

We further replaced our MRC-Net with state-of-the-art SR
methods [4]–[7] in our framework. In Fig. 6, the bicubic
interpolation of LR input, denoted as ILR, serves as the
baseline with accuracy of 92.52% to eliminate the impact
of increasing the input resolution. In contrast, adopting SR
networks improves the diagnostic performance of the entire
framework, and our MRC-Net obtains the largest performance
gain. This comparison further confirms that our MRC-Net
is a better choice for the diagnosis framework than existing
SR networks [4]–[7] from the perspective of down-stream
tasks.

Furthermore, we demonstrated the confusion matrix of our
framework in Table VI. Provided with the SR knowledge, our

diagnosis framework can easily distinguish the normal images
from abnormal ones with the sensitivity of 99.83%. Some mis-
takes happened between the inflammatory and vascular lesions
since they may show very similar characteristics, including
9.83% vascular lesions are misjudged as the inflammatory
ones and 5.67% in turn. In general, our framework produces
accurate and unprejudiced predictions for WCE diagnosis.

2) Histopathology Experiment: We further conducted a con-
sistent experiment on the PCam dataset. As shown in Table III,
our diagnosis framework also achieves a superior performance
on the real LR images captured at low-magnification, with
the accuracy of 97.11% and F1 score of 97.03% as well as
the balanced sensitivity of 96.78% and specificity of 97.28%.
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TABLE IV
THE WCE DIAGNOSIS COMPARISON WITH LR, BICUBIC

INTERPOLATED LR AND SR INPUTS

Fig. 6. Performance comparison of the SR enhanced diagnosis frame-
work using various SR methods on CAD-CAP dataset.

Besides, our diagnosis framework with both CK and MCC of
94.06%, outperforms the second best one [37] with a margin
of 3.96% in CK and 3.85% in MCC. We also implemented
the ResNet-101 [17] on PCam dataset, which is a upgraded
version of the diagnosis branch. The performance gap between
ResNet-101 and our framework, e.g., a 3.15% gap in accuracy,
supports the fact that introducing SR knowledge is more
effective than simply expanding the network. The comparison
in Table III proves that the effectiveness of our SR enhanced
diagnosis framework with a distinct advantage over state-of-
the-art methods in the real LR case.

3) Ablation Study: To evaluate the proposed SR network and
SAI blocks, we implemented the following networks on the
CAD-CAP dataset, with results presented in Table V.

• LR, HR and SR: A diagnosis branch was trained and
evaluated with 128 × 128 LR images, 512 × 512 HR
images and super-resolved ones, respectively. For the SR
case, the MRC-Net pretrained on EndoSR dataset served
as a pre-processing step of the diagnosis branch, and the
MRC-Net and diagnosis branch were jointly fine-tuned
under the diagnostic supervision, which is consistent with
previous work [48]. The HR case represents the ideal
scenario without resolution degradation.

• LR+LR w/o SAI, LR+HR w/o SAI and LR+SR w/o SAI :
Two diagnosis branches were trained and evaluated with

corresponding inputs. The interaction of two branches
was achieved by concatenation of feature maps.

• LR+LR w/ SAI, LR+ILR w/ SAI, LR+HR w/ SAI and
LR+SR w/ SAI : Two diagnosis branches were trained and
evaluated with corresponding inputs, employing the SAI
blocks for interaction. The LR+ILR w/ SAI replaced the
input of one branch in the LR+LR w/ SAI with the bicubic
interpolated LR images. Note that the LR+SR w/ SAI is
our SR enhanced diagnosis framework.

In Table V, the LR provides a baseline accuracy of 89.11%.
The SR achieves accuracy of 93.11%, with an accuracy
advantage of 4.00% over the LR. The SR knowledge promotes
the diagnosis branch to alleviate the resolution degradation,
approaching the HR with accuracy of 94.03%.

With the concatenation of feature maps from an additional
LR diagnosis branch, the LR case is improved with 1.63%
in accuracy, while the HR and SR cases are enhanced with
only 0.08% and 0.53%, respectively. This indicates that the
concatenation of multi-scale features cannot facilitate the
medical diagnosis effectively. Furthermore, we replaced the
concatenation with the proposed SAI blocks, which outper-
forms the concatenation interaction with a 1.04% and 1.30%
accuracy increase in the HR and SR cases, respectively.
Consequently, our SR enhanced diagnosis framework brings
a 5.83% accuracy improvement to the baseline LR, and also
outperforms the single-branch HR with 0.91% in accuracy.
Note that the negligible performance differences between
LR+ILR w/ SAI and LR+LR w/ SAI eliminate the impact of
input resolution, and verify that the diagnosis improvement
attributes to high-frequency details produced by SR. These
ablation experiments confirm that our framework can effec-
tively alleviate the resolution degradation problem in medical
image diagnosis.

We further analyzed the trade-off between performance and
resource overhead of SAI blocks. As shown in Table VII,
SAI blocks significantly promote the diagnosis performance,
with an increase of 1.30% in accuracy and 1.84% in
CK. Correspondingly, these SAI blocks bring an overhead
of only 5.69% parameters and 5.18% runtime memory
to the diagnosis framework. In particular, the computation
slightly increases with 2.07% FLOPs. Therefore, our designed
SAI is efficient to be employed for practical diagnosis
scenarios.

In our SR enhanced diagnosis framework, two kinds of
constraints, sample affinity consistency (SAC) and sample
affinity regularization (SAR), were developed to optimize the
diagnosis task. Specifically, SAC loss in Eq. (9) introduces the
semantic consistency between LR and SR diagnosis branches
at multi-stage, and SAR loss in Eq. (11) minimizes the
semantic gap among the mutual sample affinities of different
layers. Therefore, we conducted ablation study on these two
constraints in our framework when SAI blocks were kept,
as shown in Table VIII. The baseline framework without
any sample semantic constraint achieves the accuracy of
94.06%. Adding SAC and SAR individually can increase the
accuracy by 0.61% and 0.46% respectively, and 0.88% when
utilized together. Thus, imposing the reasonable constraints
of sample semantics among different branches and layers can
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TABLE V
THE ABLATION STUDY OF SR AND SAI BLOCKS ON CAD-CAP DATASET.BEST AND SECOND

BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED

TABLE VI
CONFUSION MATRIX OF DIAGNOSIS ON 4-FOLD CAD-CAP DATASET

TABLE VII
PERFORMANCE AND RESOURCE ANALYSIS OF SAI BLOCKS

ON CAD-CAP DATASET

TABLE VIII
ABLATION STUDY OF SAC AND SAR ON CAD-CAP DATASET

TABLE IX
THE IMPACT OF SR PART ON DIAGNOSIS TASK WITH SYNTHETIC LR

WCE IMAGES AND REAL LR HISTOPATHOLOGY IMAGES

effectively promote the diagnosis performance of the entire
framework.

V. DISCUSSION

A. Contribution of SR Network on Diagnosis

To investigate the contribution of the SR network to
the diagnosis framework, we conducted the experiment on
synthetic LR WCE images and real LR histopathology
images. Specifically, we implemented the SR enhanced diag-
nosis framework with different optimization manners for
MRC-Net. Note that the experimental results in Table IX share

the same network structure, which ensures that the amount of
parameters and the input resolution are consistent.

• Scratch +Fine-tune: The MRC-Net was trained within the
entire diagnosis framework on the diagnosis dataset from
scratch, without the pretraining on the EndoSR dataset.
Thus, this case does not introduce SR knowledge.

• Pretrain +Fixed: The MRC-Net was trained on the SR
dataset, and then fixed when training the entire diagnosis
framework on the diagnosis dataset. Thus, the SR knowl-
edge obtained by pretraining MRC-Net on SR dataset is
directly utilized in the diagnosis task without adaptation.

• Pretrain +Fine-tune: The MRC-Net was first trained on
the SR dataset, and then fine-tuned on the diagnosis
dataset using the gradients from the diagnostic supervi-
sion of the SR enhanced diagnosis framework. This case
is actually our method in Table III.

For the synthetic LR WCE case in Table IX,
the Scratch+Fine-tune achieves 93.33% accuracy and
90.03% CK, and the Pretrain+Fine-tune case increases
the accuracy and CK to 94.94% and 92.17% respectively,
which indicates the SR knowledge introduced by pretraining
of MRC-Net can bring an increase of 1.61% in accuracy
and 2.14% in CK. Compared with the Pretrain+Fixed with
93.63% accuracy and 90.44% CK, fine-tuning MRC-Net of
the Pretrain+Fine-tune case further transfers the introduced
SR knowledge to serve the entire framework better, with
a gain of 1.31% in accuracy and 1.73% in CK. As a
price, the SR performance of MRC-Net on the EndoSR
dataset drops by 0.452 dB PSNR. The consistent diagnosis
improvement is also observed on the real LR histopathology
images, as in 4th to 6th rows of Table IX. Moreover,
to verify the effectiveness of SR knowledge from synthetic
SR dataset on real LR images, we provide both normal
and tumor SR reconstruction images of PCam dataset under
different MRC-Net configurations in Fig. 7. The nearest
interpolated LR image shows very limited information and
rough structure. As Scratch+Fine-tune hasn’t been optimized
on HistoSR dataset, Scratch+Fine-tune with a global skip
connection can only produce a low-quality reconstruction,
which represents the case without SR knowledge. When
MRC-Net has been pretrained on HistoSR dataset, both
Pretrain+Fixed and Pretrain+Fine-tune generate improved
SR images with abundant texture and distinct structure, which
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Fig. 7. The SR images of PCam dataset reconstructed by MRC-Net
under different configurations.

TABLE X
THE IMPACT OF SCALE FACTOR ON SR AND

DIAGNOSIS PERFORMANCE

reveal the SR knowledge of synthetic SR dataset is beneficial
to super-resolve the real LR images. In this way, the SR
knowledge is the basis of the diagnosis improvement, and the
joint of the pretrained MRC-Net and the diagnosis network
benefits the framework with a large margin.

B. Impact of SR Scale Factor on Diagnosis

The scale factor of SR task is a hyper-parameter in our SR
enhanced diagnosis framework, and inappropriate scale factors
may degrade the diagnostic performance. To investigate the
impact of SR scale factor on both WCE and histopathology
diagnosis tasks, we first implemented MRC -Net with different
scale factors on SR dataset, and then optimized the SR part and
diagnosis part jointly for the diagnosis dataset. The input size
of LR image remains the same under 2× and 4× scale factors,
i.e., 128 × 128 for WCE case and 96 × 96 for histopathology
case. We presented the SR performance of MRC-Net and the
diagnostic performance of the entire framework at different
scale factors in Table X. In the case of WCE images, MRC-Net
achieves impressive SR reconstruction at both 2× and 4×,
with PSNR of 39.925 dB and 38.586 dB, respectively. There-
fore, 4× scale factor is recommended for the WCE case with
more SR knowledge than the 2× one, which further promotes
the diagnosis with a margin of 0.87% in accuracy.

However, achieving SR with larger scale factors is difficult,
which may result in the inferior quality of SR reconstruction.
As the structure and texture details of histopathology images
are much more complex, the 4× SR on HistoSR dataset with
PSNR of only 30.314 dB is not reliable enough to support
the diagnosis task. In contrast, the high-quality 2× SR can
introduce reliable knowledge to enhance the diagnosis. The
accuracy difference of 0.74% indicates the scale factor of 2×
is more suitable for the histopathology case.

Generally, the scale factor has two effects on the perfor-
mance of the diagnosis framework. On one hand, a larger scale
factor can provide more knowledge to improve the diagnostic

performance more. On the other hand, it may also produce
more conspicuous distortion and artifacts containing unreliable
information, which interferes the subsequent diagnosis task.
The selection of the scale factor should give priority to the
reliability of SR task in medical image analysis field.

VI. CONCLUSION

To address the resolution degradation problem in medical
image diagnosis, we propose a super-resolution enhanced
diagnosis framework. Specifically, MRC-Net with RCF is
devised to efficiently leverage the global and local features for
SR reconstruction, and the recursion distillation scheme can
promote MRC-Net using the temporal knowledge derived from
a recursive one. To better exploit the information from both
original LR images and the reconstructed SR ones, we pro-
pose the SAI block to exchange features with the semantic
relationship among samples, as well as the consistency and
regularization on sample affinity to guide the multi-scale
information interaction. Extensive experiments on synthetic
and real LR images confirm the effectiveness and efficiency
of our framework, outperforming state-of-the-art methods by
a large margin.
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